FAUNISTIC ANALYSIS OF THE HELMINTS OF SPARROWS (PASSER DOMESTICUS L., 1758) CAPTURED IN CAMPO GRANDE, RIO DE JANEIRO, RJ (ANÁLISE FAUNÍSTICA DOS HELMINTOS DE PARDAIOS (PASSER DOMESTICUS L., 1758) CAPTURADOS EM CAMPO GRANDE, RIO DE JANEIRO, RJ)

MARILIA DE CARVALHO BRASIL & SUZANA BENCKE AMATO/+

Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74539, 23851-970 Seropédica, RJ, Brasil

Faunistic analysis of the helminths of sparrows (Passer domesticus L., 1758) captured in Campo Grande, Rio de Janeiro, RJ — Sparrows captured in Campo Grande, Rio de Janeiro, RJ, were examined through necropsy and the helminths found were identified. The prevalence, intensity of infection and the habitat of each helminth species found are showed. An analysis of the helminth fauna using the importance value of the species collected indicated that in the sparrow the dominant species are: Leucocchloridium parcum, Tanaisia inopina, Choanotaenia passerina, Dispharynx nasuta and Tetrameres minima; and the co-dominant species are: Echinostoma revolutum, Eumegacetes medioximus and Mediorhynchus papillosus. According to the host specificity were classified as specialist species: L. parcum, T. inopina, C. passerina and T. minima; and as generalist species: E. revolutum, E. medioximus, D. nasuta and M. papillosus. Echinostoma revolutum was found for the first time in P. domesticus. The species E. medioximus, T. minima and D. nasuta were found for the first time in the sparrow in Brazil. The species C. passerina and M. papillosus were found for the first time in Brazil, expanding their distribution to the Neotropical region.

Key words: helminth fauna – sparrow – taxonomy – Passer domesticus

O pardal, Passer domesticus, ao ser introduzido no Brasil, introduziu também helmintos que não haviam sido descritos neste país, e ao naturalizar-se, adquiriu outras espécies de helmintos exclusivamente brasileiras. A helmintofauna do pardal foi bastante estudada na Europa (local de origem do pardal) e nos Estados Unidos. No Brasil, existem alguns trabalhos que referem a presença de espécies de helmintos neste hospedeiro, mas pela primeira vez é feito um estudo faunístico em uma amostra representativa de pardais capturados em uma área determinada.

MATERIALS E MÉTODOS

Os pardais foram capturados em Campo Grande, subúrbio da zona oeste do Rio de Janeiro, RJ. As capturas foram realizadas no período compreendido entre março de 1984 e junho de 1989. As aves foram capturadas com alçapões, armados diariamente em torno das 6 horas, contendo farelos de pão, arroz cozido ou milho moido. Foram mortas com clorofór- mio, pesadas e identificadas com relação ao sexo, através da cor das penas na região peitoral e pelos órgãos genitais. Após incisão ventral na linha mediana do corpo, no sentido da cloaca até a região da sínge, os órgãos foram isolados e examinados em placas de Petri contendo solução salina fisiológica 0,85%. Os helmintos encontrados, foram fixados, corados, processados, para montagens permanentes de acordo com as técnicas de Amato (1985), e posteriormente determinados.

Para análise comparativa entre o número de pardais machos e fêmeas capturados e infectados pelos grupos de helmintos encontrados, foi utilizado o teste não-paramétrico, qui-quadrado, com nível de significância de 0,05.

As espécies de helmintos encontrados foram classificadas de acordo com Thul et al. (1985), a partir do cálculo do valor de importância (I), de cada espécie, onde I = M x [(AxB) + (ΣAxB)] x 100, sendo que “A” representa o número total de espécimes da espécie “X”, “B” representa o número total de

Part of the thesis of the first author.

*Pesquisadora do CNPq.
pardais infectados com a espécie "X" na amostra, e "M" representa uma constante com valor igual a 1, uma vez que apenas espécimes adultos foram encontrados. Se I ≥ 1,0, a espécie "X" foi considerada Dominante, indicando que ela é fortemente característica dos pardais capturados em Campo Grande. Se 0,01 ≤ I < 1,0, a espécie "X" foi considerada Co-Dominante, indicando que ela também contribui para a caracterização da helmintofauna dos pardais da região, mas em menor grau do que as espécies Dominantes. Se 0 < I < 0,01, então, a espécie "X" pode desenvolver-se e atingir a fase adulta no pardal, mas não ocorre frequentemente, e portanto, não contribui de forma significativa para a caracterização da helmintofauna. Se I = 0, a espécie "X" tem acesso ao hospedeiro, mas não atinge a fase adulta, indicando que ela é característica de outro hospedeiro. Utilizando o trabalho de Bush & Holmes (1986), as espécies de helmintos que foram citadas regularmente em *P. domesticus* no Brasil e em outras regiões do mundo, foram classificadas como Especialistas e as espécies que foram registradas, parasitando várias espécies de hospedeiros vertebrados, além de *P. domesticus*, foram classificadas como Generalistas.

Os índices de afinidades obtidos entre as espécies de helmintos que co-ocorreram nos pardais, foram obtidos através do índice de Jaccard de acordo com Dajoz (1983), onde

\[q = 100 \times \left[c + (a + b - c) \right], \]

e "a" representa o número de pardais infectados com a espécie "X" de helminto e "b" representa o número de pardais infectados com a espécie "Y" e "c" constitui o número de pardais infectados com as espécies "X" e "Y" de helmintos simultaneamente.

RESULTADOS

Foram capturados um total de 142 pardais, sendo 63 fêmeas e 79 machos. Os pardais caíram nos alçapões nos períodos compreendidos entre 7-10 h e 15-17 h.

Estavam infectados, 73 pardais (51,4%), dos quais, 29 (20,4%), eram fêmeas e 44 (31%) eram machos. A razão sexual dos pardais capturados, foi um macho para uma fêmea. O número total de fêmeas e machos capturados e infectados com as diferentes espécies de helmintos não diferiu significativamente (P < 0,05).

Foram encontradas oito espécies de helmintos, sendo que as espécies de trematódeos digenéticos, *Echinostoma revolutum* (Froelich, 1802), *Eumegetes medioximus* Braun, 1901, *Leucocloridium parcum* Travassos, 1922 e *Tanaisia inopina* Freitas, 1951, representaram 55,5% do total de helmintos encontrados; o cestóide *Choanotaenia passerina* (Fuhrmann, 1907) Fuhrmann, 1932, represent-

TABELA I

<table>
<thead>
<tr>
<th>Espécies de helmintos</th>
<th>Sexo</th>
<th>M</th>
<th>N (a)</th>
<th>Localização</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trematódeos digenéticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinostoma revolutum</td>
<td>1</td>
<td>0</td>
<td>04 (4)</td>
<td>reto</td>
</tr>
<tr>
<td>Eumegetes medioximus</td>
<td>0</td>
<td>2</td>
<td>08 (3-5)</td>
<td>cloaca</td>
</tr>
<tr>
<td>Leucocloridium parcum</td>
<td>4</td>
<td>3</td>
<td>120 (2-35)</td>
<td>cloaca</td>
</tr>
<tr>
<td>Tanaisia inopina</td>
<td>9</td>
<td>10</td>
<td>237 (1-70)</td>
<td>rins</td>
</tr>
<tr>
<td>Cestóide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choanotaenia passerina</td>
<td>12</td>
<td>18</td>
<td>89 (1-14)</td>
<td>intestino anterior</td>
</tr>
<tr>
<td>Nematódeos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispharynx nasuta</td>
<td>2</td>
<td>4</td>
<td>67 (1-30)</td>
<td>esôfago</td>
</tr>
<tr>
<td>Telemereza minima</td>
<td>14</td>
<td>15</td>
<td>137 (1-23)</td>
<td>proventrículo*</td>
</tr>
<tr>
<td>Acantocéfalo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meliorhynchus papillosus</td>
<td>2</td>
<td>0</td>
<td>03 (1-2)</td>
<td>intestino posterior</td>
</tr>
</tbody>
</table>

F: pardin fêmea; M: pardin macho.
N: número total de espécimes coletados.
a: amplitude variação das intensidades de infecção.
*: fêmeas — no interior das glândulas do proventrículo.
machos — luz do proventrículo.
TABELA II
Prevalência e classificação quanto ao valor de importância e a especificidade das espécies de helmintos de *Passer domesticus* capturados em Campo Grande, Rio de Janeiro, RJ

<table>
<thead>
<tr>
<th>Espécies de helmintos</th>
<th>N (P)</th>
<th>I</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trematódeos digenéticos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinostoma revolutum</td>
<td>01 (0,7)</td>
<td>0,03</td>
<td>CD, G</td>
</tr>
<tr>
<td>Eucestodes medius</td>
<td>02 (1,4)</td>
<td>0,13</td>
<td>CD, G</td>
</tr>
<tr>
<td>Leucocloridium parcum</td>
<td>07 (4,9)</td>
<td>6,76</td>
<td>DO, E</td>
</tr>
<tr>
<td>Tunasia inopina</td>
<td>19 (13,3)</td>
<td>36,27</td>
<td>DO, E</td>
</tr>
<tr>
<td>Cestóide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choanotaenia passerina</td>
<td>30 (21,1)</td>
<td>21,50</td>
<td>DO, E</td>
</tr>
<tr>
<td>Namatóides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphyllobothrium nasuta</td>
<td>06 (4,2)</td>
<td>3,24</td>
<td>DO, G</td>
</tr>
<tr>
<td>Tetrameres minima</td>
<td>29 (20,4)</td>
<td>32,00</td>
<td>DO, E</td>
</tr>
<tr>
<td>Acantocéfalo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediorynchus papillosus</td>
<td>02 (1,4)</td>
<td>0,07</td>
<td>CD, G</td>
</tr>
</tbody>
</table>

N: número de pardais infectados.
P: prevalência de acordo com Margolis et al. (1982).
I: valor de importância da espécie de acordo com Thul et al. (1985).

TABELA III
Índice de afinidade entre as espécies de helmintos que coocorreram em *Passer domesticus* capturados em Campo Grande, Rio de Janeiro, RJ

<table>
<thead>
<tr>
<th>Espécies correlacionadas</th>
<th>C</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choanotaenia passerina – Tetrameres minima</td>
<td>6</td>
<td>11,32</td>
</tr>
<tr>
<td>2. C. passerina – Tunasia inopina</td>
<td>3</td>
<td>6,52</td>
</tr>
<tr>
<td>3. C. passerina – Leucocloridium parcum</td>
<td>1</td>
<td>2,77</td>
</tr>
<tr>
<td>4. C. passerina – Diphyllobothrium nasuta</td>
<td>1</td>
<td>2,77</td>
</tr>
<tr>
<td>5. C. passerina – Mediorynchus papillosus</td>
<td>1</td>
<td>3,22</td>
</tr>
<tr>
<td>6. T. minima – T. inopina</td>
<td>3</td>
<td>6,66</td>
</tr>
<tr>
<td>7. T. minima – L. parcum</td>
<td>3</td>
<td>9,09</td>
</tr>
<tr>
<td>8. T. inopina – L. parcum</td>
<td>2</td>
<td>8,33</td>
</tr>
<tr>
<td>9. T. inopina – Eucestodes medius</td>
<td>1</td>
<td>5,00</td>
</tr>
<tr>
<td>10. D. nasuta – M. papillosus</td>
<td>1</td>
<td>14,28</td>
</tr>
</tbody>
</table>

C: número de pardais infectados com duas espécies de helmintos.
q: coeficiente de afinidade de Jaccard.

Dos 73 pardais infectados, foram encontrados 54 (74%) infectados com uma espécie de helmínto, 17 (23,3%) com duas espécies e 2 (2,7%) com três espécies de helmintos. Dos 19 pardais infectados com duas ou três espécies de helmintos, foram encontrados 10 grupos de espécies relacionadas duas a duas, sendo que, seis destes grupos são constituídos pelas espécies classificadas como Dominantes, que co-ocorreram umas com as outras mutuamente (Tabela III).

DISCUSSÃO

A não existência de diferenças relacionadas ao sexo dos pardais infectados, sugere a não existência de preferência por tipos de alimentos entre pardais e pardocas capturados.

Nas hortas, onde os pardais frequentemente procuram alimentos, desenvolvem-se moluscos terrestres, como *Subulina octona*, que ao ingerirem ovos de *T. inopina*, da parte líquida das fezes do pardal, tornam-se hospedeiros intermediários desta espécie de helmínto, apresentando esporocistos contendo grande número de metacercárias, infectantes ao pardal, uma vez ingeridas junto com os moluscos predados. Desta forma, *T. inopina*, constituí-se a espécie de trematódeo com prevalência mais elevada de todas as encontradas no presente trabalho. Embora, sejam menos abundantes, os moluscos sucineídeos, quando infectados, também desenvolvem esporocistos contendo grande número de metacercárias encistadas. Neste caso, a espécie de trematódeo envolvida, pertence ao gênero *Leucocloridium* (Carus, 1835). Lutz (1921) encontrou, no Estado do Rio de Janeiro, vários espécimes de *Homalonyx unguis* sobre vegetação aquática, infectados com esporocistos, que “pulsavam” nas antenas destes moluscos, atraindo a ave, como se fosse a larva de um inseto. Assim embora os sucineídeos sejam menos encontrados pelos pardais, justificando a prevalência...
mais baixa de *L. parcum*, com relação às outras espécies, este helminto pode ser considerado uma das espécies característica (*I > 1,0*) dos pardais capturados em Campo Grande, devido ao grande número de metacercárias produzidas em cada esporocisto e principalmente pela própria estratégia de atrair o hospedeiro definitivo pela pulsação do esporocisto, pelas faixas coloridas que o esporocisto apresenta e por alterar o comportamento do hospedeiro, expondo-o ao hospedeiro definitivo.

Tetrameress minimaa, não tem ciclo conhecido, porém as espécies do gênero *Tetrameress* Creplin, 1846, cujos ciclos foram elucidados, têm como hospedeiros intermediários, baratas, que também proliferam junto aos depósitos de lixo, tornando-se fáceis presas dos pardais, e isto parece suportar o fato de *T. minimaa* ser a segunda espécie de helminto mais característica de *P. domesticus*.

Os pardais, quando predam novos tipos de organismos, em habitats regularmente menos explorados por eles, ampliam seu nicho ecológico, e por outro lado, adquirem espécies de helmintos, classificadas como Co-dominantes, ou menos características, como *E. medioximus* e *E. revolutum*, consideradas acidentais. Estas espécies são também classificadas como Generalistas (Bush & Holmes, 1986), pois são capazes de parasitar outras espécies de aves, com nichos ecológicos mais específicos que o pardal. *Echinostoma revolutum*, pela primeira vez registrado em pardal no presente trabalho, já foi citado por Lutz (1924), Mello (1933), Travassos et al. (1968), Carvalho et al. (1974) e Kohn et al. (1972), parasitando animais domésticos.

De acordo com Schwenck (1927) e Vandel (1960), *D. nasuta* utiliza como hospedeiro intermediário isópodes terrestres, como *Porcellio laevis*, *P. scaber*, e *Armadillidium vulgare*. Como vivem sob pedras abrigados da luz solar, os pardais devem encontrá-los pouco, justificando a prevalência baixa apresentada por *D. nasuta* em pardais capturados em Campo Grande. Estes isópodes podem também ser hospedeiros intermediários de algumas espécies de acantocéfalos. No presente estudo, foi observado um isópode com coloração branca infectado com três acantelas e em local protegido da umidade. Conforme apresentado por Moore & Laswell (1986), os isópodes quando infectados com acantelas, possuem uma tendência a se exporem à luz solar. De acordo com Oeting & Nickol (1981), quando as larvas de acantocéfalos, crescem, simultaneamente com o isópode terrestre jovem infectado, ocorre um processo patológico no isópode, levando-o a apresentar uma pigmentação distrófica, tornando-o muito mais destacado no local em que vive. Assim, as alterações de comportamento e de coloração citadas, tornam os isópodes terrestres infectados, muito mais suscetíveis à predação, garantindo o ciclo de vida do acantocéfalo. *Dispharynx nasuta* e *M. papillosus* apresentam prevalências baixas comparadas às espécies características, e conforme o cálculo do índice de afinidade de Jaccard, constituem também as duas espécies de helmintos mais afinas, dos dez grupos de espécies relacionadas duas a duas, encontradas nos pardais infectados. O compartilhamento do mesmo tipo de hospedeiro intermediário, em seus ciclos evolutivos, possivelmente explica esta co-ocorrência com índice de afinidade elevado.
Das oito espécies de helmintos encontradas no presente estudo, cinco foram consideradas Dominantes, constituindo o conjunto de espécies que caracterizam a helmintho-fauna do par- dal de Campo Grande, Rio de Janeiro, RJ. As espécies *L. parvum*, *T. inopina*, e *T. minima*, descritas no Brasil, foram adquiridas pelo par- dal, após sua naturalização, sendo que *T. inopina*, foi descrita por Freitas (1951) em *P. domesticus* no Estado do Rio de Janeiro e *Tetraranes minima*, foi pela primeira vez en- contrada desde sua descrição original por Travassos (1914) e um *Tachyphonus cristatus bruneus* (Spix, 1824). O cestóide *C. passerina*, foi o que apresentou prevalência mais elevada e parece altamente específico ao pardal, sendo seguido pelas espécies *T. minima* e *T. inopina*. *Dispharynx nasuta*, também foi classificada como espécie Dominante, embora com prevalência menos elevada em relação às de-

Das espécies relacionadas duas a duas, dois pares apresentaram índice de afinidade (q) elevado: *Choanotaenia passerina* e *T. minima*, espécies que apresentam prevalências eleva- das, e além disso, possuem como hospedeiros intermediários, dipteroides e barbatas, que podem ser encontrados ocupando o mesmo habitat, garantindo os dois ciclos no pardal; e o par *D. nasuta* e *M. papillosus*, com prevalências baixas, e a co-ocorrência pode ser explicada pela utilização do mesmo hospedeiro intermediário nos seus ciclos evolutivos.

No presente trabalho, o trematódeo digenético, *E. revolutum* constitui-se uma nova ocorrência para *P. domesticus*; *E. mediterrimus*, *T. minima* e *D. nasuta*, são encontradas pela primeira vez parasitando esta ave no Brasil, e as espécies *C. passerina* e *M. papillosus*, são citadas pela primeira vez no Brasil, ampliando sua distribuição para a região neotropical. Embora não tenham sido encontradas neste estudo, as espécies de trematódeos digenéticos *Lutztrema transversum* (Travassos, 1917) e *Tanaisia minax* Freitas, 1951, foram descritas para *P. domesticus* no Brasil, e o nematóide *Capillaria angusta* (Duj., 1845) Travassos, 1915, já foi registrado parasitando esta ave de acordo com Travassos (1915) e Yamaguti (1961).

REFERÊNCIAS

